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ON LATERAL CABLE OSCILLATIONS OF 

CABLE-CONNECTED SPACE STATIONS 

By Willard W. Anderson 
Langley Research Center 

SUMMARY 

The influence of lateral cable oscillations on a spinning cable-connected space sta
tion is defined in t e r m s  of steady-state and transient response to torques acting on the 
space station. The system is defined by using linear rigid-body equations and a dual 
formulation of the cable modes. Damping is included in the dual formulation and esti
mates of this damping are provided. The analysis allows a determination of the required 
depth of modeling for  a given system in t e r m s  of the system parameters and the expected 
disturbances. Energy flow within the system is discussed by using a system bond graph. 

INTRODUCTION 

The equations of motion of a rotating cable-counterweight -space-station system 
in a gravitational field gradient are extremely complex and nonlinear. A complete solu
tion of these equations is therefore not feasible and thus the requirement exists that 
assumptions be made which reduce the mathematical problem to a level where solution 
is possible. 

This paper represents an attempt to define one aspect of the system, namely the 
lateral oscillation of the connecting cable and in particular the effect of this oscillation 
on the dynamic response of the space station and counterweight. Coupling between 
lateral and longitudinal oscillation is not included. The influence of the gravitational 
field and of the angular momentum of the system is not directly included. The variation 
of cable tension is neglected and only linear equations are used in defining the solutions. 
Low cable curvature arises from high-velocity lateral cable waves. Cable lengths are 
assumed to  be less than 2 statute miles (3.2 km) and space-station and counterweight 
mass,  geometry, and inertia are assumed to  be of equal order  of magnitude. These are 
important simplifications (refs. 1 and 2) which can influence the results, but they have 
been made in order to define clearly the basic character of the interaction between lateral 
cable modes and the space station and counterweight and in particular the effect of lateral 
cable forces on the attitude of the space station and counterweight. The analysis and 
description are presented in t e r m s  of easily calculable frequency parameters which refer 



to  uncoupled-cable and massless-cable systems. The dual modal formulation is 
required, rather than the formulations of earlier papers. 

SYMBOLS 

A cable cross-sectional area (see eq. (8)) 

A,B,C X-, Y-, and Z-axis rigid-body inertias 

A, BY C,D, E J F steady-state parameters 

cable attachment lengths 


cable phase velocity 


cable complex modulus 


cable storage modulus 


cable loss  modulus 


power bond effort 


base of natural logarithms (see, for example, eqs. (C6) and (D4)) 


Z -direction disturbance forces 


power bond flow 


cable mode spatial functions 


cable mode t ime functions 


cable area inertia 


system inertias 
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J1’J2 system inertias (see eqs. (D2)) 

K1’K2 system stiffnesses 

k cable wave number 

J - J ~ N ~ P ~ Q  steady -state parameters 

cable length 

MC cable bending moment 

Mo’ M1’M@?pZ disturbance torques 

m bond graph modulus 

m1’” system masses  

n modal index 

p17p2 X-direction disturbance forces 

r cable damping parameter 

r C  cable radius 

S cable coordinate 

T cable tension 


T1’T2 disturbance tor  ques 


t time 


U1,U2,U3,UT system energies 


us (t) unit step function 
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u1'u2 system translations 


V cable shear force 


VO?V1?V2,V* system translations 


X?Y? system axes 


X,Y,Z system coordinates 


ax,cry, a rigid-body attitudes 

~ 1 , ~ 2 , ~ 3 , ~ 4steady-state phase angles 

E cable ratio parameter  

rl lateral  cable displacement 

Bo, 01, 02, O3 system attitudes 

Pn cable modal damping coefficient 

PA cable mass  per  unit length (p in this case  denotes mass  density) 


c7 cable tensile s t r e s s  


( ~ 1 ,  system attitudes
( ~ 2 ~ ~ 3  

@ lat era1 cable displacement 

% spin frequency o r  velocity 

521J512 uncoupled system frequencies (see eqs. (D2)) 

w 	 forcing function frequency 

cable mode frequencies 

4 


-. - - .~... .. .. .,, ....... I,,.,.. I, I - i " ... I 



Subscript: 

max maximum 

Dots over symbols indicate derivatives with respect to  time. Pr imes  indicate 
derivatives with respect to  distance. 

DESCRIPTION O F  PHYSICAL SYSTEM 

The basic configuration of the physical system is shown in figure 1. The three 
portions of the system are the space station (mass = ml, inertia = I1), the counter
weight (mass = m2, inertia = 12),and the cable (mass per unit length = pA, 
damping parameter = r, tension = T). The X,Y,Z axes system is also shown. A 
cable coordinate s is assumed to be approximately equal to y. The axes system 
rotates approximately with the physical system about the (spin) axis at the angularZ 

velocity no. System geometry is defined by the cable length Z and the distances A1 
and A2 from space-station and counterweight centers of m a s s  to cable attachment 
points. The space-station and counterweight inertias about the X- and Z-ax i s  are 
assumed to  be approximately equal, within the stability assumptions of appendix A. 

Crew-motion disturbances are defined by the X- and Z-direction forces P1, P2,
F1,and F2 and by the torques M1, M2, T1, and T2. Space-station and counter
weight attitudes and translations are ql, q2, ul, and u2 for the XY plane (fig. 2) 
and el, 02, vl, and v2 for the YZ plane (fig. 3). Lateral cable displacements are 
+(s,t) for the XY plane and q(s,t) for the YZ plane. 

The system is further described in a later section in t e r m s  of effort and flow power 
variables by using bond graph techniques. 

DISCUSSION OF EQUATIONS OF MOTION 

If the effects of cable mass  and cable damping are negligible, the equations required 
to define the motion of two rigid bodies (space station and counterweight) connected by a 
cable contain 12 variables (if positive cable tension is assumed and constraints are neg
lected). The 12 variables represent six degrees of freedom for two rigid bodies. These 
equations would be highly coupled and nonlinear. However, if  the motion of the bodies 
relative to the rotating axes system of figure 1is small and the system rotates slowly, 
the nonlinearity and coupling can be neglected. With this simplified system description 
the effects of cable m a s s  and damping can be easily added. This constitutes the approach 
used in developing the system equations presented herein. 
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In appendix A the rigid-body Euler or  low-frequency characterist ics of the system 
are discussed and basic inertial requirements are placed on the system from stability 
and "stiffness" considerations. The conclusions of appendix A are that the rigid-body 
constant-spin-velocity assumption is valid, that the Z-ax i s  rigid-body coupling rate is 
small, and that the rigid-body X-axis attitude can be described with a stable second-order 
equation, 

Appendix B contains derivations of the system equations of motion where the cable 
lateral forces are considered in a general form. The derivation for the YZ plane 
begins with the rigid-body equation for  X-axis attitude, the first of equations (A4). Dis
turbances and equations of motion for  the Y-axis are not included since they do not 
directly influence the lateral cable motion. The equations of motion for the XY (spin) 
plane are shown to be identical to those for the YZ plane for  high-frequency response, 
for systems where the flexible-body mode frequencies are well above the spin 
frequency 52,. 

Appendix C contains a derivation of the cable equations of motion and a dual formu
lation of these equations in modal form, including equations for predicting the damping 
parameters for  the modes as functions of the cable geometry and material. The final 
linear equations for the YZ plane which constitute a linear mathematical description of 
the physical system are 

m 2 t 2  = F2 - T 2 ( l , t )
as 

I1il + TAIQ1 = M1 + TA1 $(O,t) 

12'e2+ TA2Q2= M2 + T A 2 3 , t )  
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arl hn-(Z,t) = B3 - 2 (-1)n - * *  
a s  

n= 1 

GE* + 2pnwnkE*+ w n 2 h r  = fb(O,t) + (-l)n+l t(Z,ti (n = 1, 2, . . .) J 
Equations (1)represent the space station and countweight; equations (2), the condi

tions at the cable attachment points (no cable shear being assumed); and equations (3), 
the cable itself, both as a partial differential equation and as an infinite series of ordinary 
differential equations (modal description). 

The following sections present response data for steady-state and transient distur
bances for the YZ plane only. These data are valid for the XY plane also, for the 
frequency range where lateral cable oscillations are important, but are not valid for the 
XY plane for disturbances of extremely low frequency. For  example, the resonance at 
w = no in evidence in the following steady-state data for the YZ plane is not present 
in the XY plane; but the resonances at w = s21 ,~27w17and so forth a r e  present. 

Steady-State Response 

The dynamic equations of motion in the YZ plane, equations (1)to  (3), have been 
solved for a harmonic input nionient M1 = Mo sin w t  acting on the space station. This  
disturbance w a s  chosen for two reasons. First, it directly causes large space-station 
attitude response and thus would influence pointing accuracies of any experiment (tele
scope, tracking experiment, etc.); secondly, it yields representative vehicle gain plots 
for any attitude-control-system analysis. The solution is summarized in appendix D, and 
a digital program listing and explanation for calculation of response information are 
included in appendix E. The program calculates vehicle gain only but can be easily mod
ified to calculate phase in order  to  obtain more control-system information by using the 
phase equations of appendix D. Vehicle gain is given in figures 4 to 12 in t e r m s  of the 
four dimensionless amplitudes: 81/00, vl/vo, e2/Q0, and v21vo where 
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as functions of the eight dimensionless variables w/fil, pl, wl/O1, S22/S21, ml/m2, 
11/12, A2/1, and 12/J2 where 

a rc
P I =  2Tl 

J2 = m2A22 

The first dimensionless variable is the ratio of the disturbance frequency w to 
the uncoupled resonant frequency Q1. Plots of steady-state response data indicate that 
the basic flexible-body attitude response of the space station resembles the response of 
a second-order system, with the resonant frequency ill. The second variable p1 is 
the damping coefficient for the first flexible-body cable mode. Appendix C contains a 
derivation of this coefficient, and a discussion is presented later in this section. The 
third dimensionless variable w1/S21 is the ratio of the fundamental uncoupled cable 
frequency 01 to the uncoupled space-station resonant frequency al. The separation 
of these two frequencies in the frequency domain is a measure of the coupling between 
space-station attitude and lateral cable oscillation. Appendix C also contains a deriva
tion of wl. The fourth variable Q2/S21 is the ratio of the uncoupled counterweight 
resonant frequency Q2 to the uncoupled space-station resonant frequency Q1. The 
four remaining variables are ratios of mass,  inertia, and geometry. 

The interrelationship between these variables and the system response character 
is t ics  is quite extensive in t e r m s  of possible data generation. For example, 4(3?) o r  
approximately 8800 response plots would be required for only three values each for the 
last seven dimensionless variables. For this reason, only the main characteristics of 
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the system are presented and a program listing and explanation are included in appen
dix E for systems other than those presented. Also, to  avoid symbol repetition, the 
values of the last seven variables will be given as a set of values where, for example, the 
set (0, 50, 1, 1, 1, 0.01, 0.333) indicates that 

A2 -= 0.01 
1 

I2 - 0.333 
J2 

Figure 4 contains space-station and counterweight response data plotted as func
tions of the forcing frequency ratio w/S21 for the preceding set of variables repre
senting a symmetrical system of the indicated geometry and with lateral cable modes of 
very high frequency. Coupling between lateral  cable oscillation and space-station and 
counterweight oscillation is therefore negligible. The space-station attitude response is 
seen to resemble the response of a single-degree-of-freedom system, with a resonant 
frequency Q1 and an additional resonance at the spin frequency Qo. The spin-
frequency effect is not a t rue resonance but represents a rotation o r  tilting of the actual 
spin plane. This effect is a rigid-body characteristic of the system for YZ-plane oscil
lation. It occurs at the spin frequency no,where the input moment M1 is in phase 
with the rotation, becoming equivalent to  a moment fixed in inertial space and therefore 
continuously rotating the system. The linear mathematics used in generating these 
steady-state response plots are not valid at the resonance but are valid near the resonance 
if  the resulting amplitudes are small. Counterweight steady-state response is relatively 
small, with maximum amplitudes near w = Qo and w = Q1 = Q2. Figure 4(b) is a plot 
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of space-station and counterweight translations, which are equal for th i s  case since cable 
m a s s  is negligible ( w 1  >> S-2 1). The low-frequency rigid-body res,?cnse can be expressed 
mathematically by the equations of appendix A and the relation 

The high-frequency response indicates a resonance at w = G1; but for  freqL ncies other 
than this, amplitudes are small. 

Figure 5 contains four space-station and counterweight attitude plots which can be 
used to demonstrate the influence of the dimensionless variables on the separation 
between spin frequency and uncoupled resonance frequency. The equation that re la tes  
the two frequencies is 

Equation (4)is the result of an algebraic manipulation of the following equation for cable 
tension (where cable m a s s  is neglected): 

T =  m l m 2  (I + A 1 + A  2) no2 
(5)

ml+ "2 

Equation (4)i l lustrates the dependence of the spin ratio on the variables 12/J2, A2/Z, 


ml/m2, 5221
52
1
, and, to  a lesser degree, 11/12. The plots of figure 5 illustrate that 


changing these variables will affect the lower resonance, according to equation (4),with

out appreciably changing the basic high-frequency character of the system, when the 

fundamental cable frequency w1 is high and the spin ratio is sufficiently small 

(no<< al). Figure 5(a) is a response plot for the system (0, 50, 1, 1, 1, 0.01, 0.0333). 

The plot illustrates that a decrease in the inertia ratio 12/J2 results in a decrease in 

spin ratio without affecting the response near  w - al. Figure 5(b) is a response plot 

for  the system (0, 50, 1, 1, 1, 0.1, 0.333). The increase in A2/ Z from the system of 

figure 4 increases the spin ratio, but again the response near w - nl is not affected. 

Figure 5(c) is for the system (0, 50, 1, 4, 1, 0.1, 0.333). The decrease in spin ratio 

relative to the resul ts  of figure 5(b) is a result of the increase in the ratio ml/mZ. 

Figure 5(d) is for the system (0, 50, 2, 1, 1, 0.1, 0.333). The increase in the ratio 

S-221S-2 1 is reflected not only by the increase in 520/521 but also by the additional 

resonance at w - Q2. This additonal resonance has a pronounced effect on counter


weight response but only a small  effect on space-station response. Figure 5 indicates 
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that if the spin ratio 52,/521 calculated by equation (4) is small, the system response 
can be considered as the uncoupled superposition of flexible-body motion on rigid-body 
motion (appendix A) near w - Q1 - a2 (when w 1  >> 521). 

Figure 6 is an attitude response plot for the system (0, 50, 0.5, 1, 1, 0.01, 0.0333). 
522This system deviates from symmetry by having -= 0.5, this condition being reflected 
01 

by the strong counterweight resonance at o - a2. The influence of this third resonance 
on space-station attitude is not appreciable. Figure 7 is an attitude response plot for the 
system (0, 50, 2, 1, 1, 0.01, 0.0333). The counterweight uncoupled resonance a2 is 
twice the space-station uncoupled resonance 521. Again the effect of the additional 
resonance is not appreciable for  the space-station response. 

The previous data are for  systems where the cable fundamental mode frequency w1 
is wel l  above no, Q1,and a2. This is a required condition if  a cable is to be modeled 
as a massless  string, with no degrees of freedom of its own. Figure 8 contains plots for 

w1the system (0, 2, 1, 1, 1, 0.1, 0.333), where -= 2. The decrease in wl/521 implies 
01 

the addition to the system of an infinite number of degrees of freedom and therefore, for 
an undamped system, an infinite number of cable resonances. However, when the funda
mental uncoupled cable frequency is sufficiently high, the coupling, although in existence, 
will not appreciably alter response, other than to superimpose the cable modes at nearly 
the uncoupled cable frequencies On. This is very nearly the case for figures 8(a) and 
8(b), although two new resonant peaks now appear on either side of the resonance at 
w - al. Space-station and counterweight translations are plotted in figures 8(c) and 8(d). 
The two resonances near w - 521 are clearly defined, as is the resonance associated 
with wl. The response for the higher cable resonances is too low to appear in the fig
ures.  The space-station and the counterweight translations exhibit a response at several 
frequencies near 521 and greater than al, where one translation (VI) is zero and the 
other (v2) is finite. This condition seems more descriptive than significant. 

Figures 9 and 10 contain the same response information as figure 8, but for the 
systems (0, 1, 1, 1, 1, 0.1, 0.333) and (0, 0.5, 1, 1, 1, 0.1, 0.333), o r  for systems with 
w1 W 1-= 1 and -= 0.5, respectively. The figures illustrate how cable-to-counterweight 
521 521 
and cable-to-space station coupling increases as the fundamental uncoupled cable fre
quency decreases. This result  reflects more influence of the cable mass  on the system 
response. The point is made that the system is quite involved dynamically i f  the 
uncoupled cable frequencies On are near the uncoupled space-station and counterweight 
frequencies and Q2; therefore, any simulation of such a system would require the 
inclusion of the effects of cable lateral motion when the ratio w1/521 is not large. 
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Cable damping has  been assumed to be small  for all previous response data. This 
assumption is valid if the variable p1 is small. The following order-of-magnitude 
analysis shows that for systems where the cable length is long, the damping coefficient 
p1 will be negligibly small. In appendix C the modal damping of equations (C13) is 
expressed as 

Substituting equation (C 10) yields 

For a cable of circular c r o s s  section, the area inertia is given as 

2 
I=(:) A 

where rc is the cable radius and A is the cable cross-sectional area.  Substitution 
of equation (8) into equation (7) yields 

A 
a priori  that E" is ofwhere u = -T is the tensile stress in the cable. It is assumed --

the same order  of magnitude as 0,this assumption being valid for most metallic cables. 
Therefore, the order-of -magnitude relation exists that 

This equation clearly supports the assumption of small damping since cable radius rc 
is several o rders  of magnitude lower than cable length 1. The data presented a r e  thus 
justified. 

Figure 11is included for the system (0.1, 0.5, 1, 1, 1, 0.1, 0.333), for which it was 
assumed that another mechanism w a s  available to provide cable damping and that this 
cable damping w a s  mathematically similar to the damping pn. This system is identical 
to that for figure 10, with the exception that p1 = 0.1. Rigid-body space-station and 
counterweight responses are identical near w - no. The absence of flexible-body vehi
cle motion in this frequency region is thus substantiated. For  the frequency range where 
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w > no,response is increasingly altered as resonant amplitudes for the frequencies near 
w - n1 become smaller, until, for the high cable modes, resonances no longer exist. 
This effect is caused by the increasingly greater damping in each higher cable mode 

Transient Response 

Equations (l), (2), and (3) have been digitally integrated for two transient distur
bance moments acting on the space station. The first moment M1 = 100us(t) represents 
the disturbance caused by a crew member who moves relative to  the artificial gravity 
field in the Z-direction and then remains at a new position. The second moment 
M I =  100us(t)cos(l.lt) represents the disturbance caused by a crew member who moves 
continuously between two positions after an initial motion similar to that of the first case. 
These disturbances act on a symmetrical vehicle defined by the following coefficients: 

ml  = m2 = 700 slugs (10 216 kg) 

I1 = I2 = 40 000 slug-ft2 (54 232 kg-m2) 

AI = A2 = 10 feet (3.048 meters) 

Z = 2500 feet (762 meters) 

pA = 0.015 slug/ft (0.718 
c = 817 ft/sec (249 m/sec)

T = 10 000 pounds (44 482 N) 

p1 = 10-6 

These coefficients are expressed in steady-state notation as 0.649, 1, 1, 1, 0.004, 
0.571). 
 Figure 12 contains steady-state plots for attitude and translation of the space 
station and counterweight. These plots illustrate the close proximity of the station, 
counterweight, and cable lower resonances in the frequency domain. The general char
acter of these plots is similar to  that of the plots previously described. 

Figure 13 contains t ime domain plots of space-station and counterweight response 
for the step moment M1 = 100us(t). These plots contain transient motion superimposed 
on the steady-state motion predicted by figure 12 for a zero frequency or  constant input. 

Figure 13(a) i l lustrates the transient overshoot of space-station attitude by a factor 

of two t imes the steady-state displacement 8, = -= M1 lom3radian and then subsequent 
TA1 
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oscillation at the frequency 521 = = 1.58 rad/sec. The space station then 

begins to radiate energy through the cable to the counterweight, with accompanying loss  
in amplitude. 

Figure 13(b) is a plot of counterweight attitude. An initial delay in response 

At = L =  3.06 seconds is required for any energy to propagate f rom the space station 
C 

along the cable to the counterweight. The counterweight then begins to oscillate at  the 

uncoupled frequency Q2 = a1= 1.58 rad/sec, with increasing attitude, until a complete 
exchange of available energy has  taken place between the space station and the counter
weight. The energy exchange then reverses .  This process  would repeat until damping 
had absorbed the available energy and the system had reached the steady state. (For 
the low damping of the system in fig. 13, this absorption requires  significant t ime and 
therefore is not a noticeable effect.) 

Figure 13(c) is a plot of space-station translation vl. The low-frequency oscilla
tion is that predicted by the first of equations (A4) 

namely 

--&1 MX - cos S2,t)% = 

where 

Mx = 100us(t) ft-lb (Mx = 136us(t) N-m) 

A =  I1 + I2 + "l"2 (1  + A1 + A2)2 = 0.222 x l o l o  slug-ft2 (0.301 X 1O1O kg-rn2)
m2 + m2 

1
mlm2 A 1 + A 2 + Z  

= 0.106 rad/sec J 
o r  

v1 = -v*(l - cos sot) 

v2 = V*( l  - cos  slot) i 
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where 

c?+A1+A2 M 
V* = -= 0.005 foot (0.0015 meter)

2 AQO2 

The value of v* can also be found from figure 12; v* - 0 . 5 ~ ~= 0.005 foot (0.0015 meter). 

Equations (12) describe the low-frequency oscillation of figure 13(d) as well. The 
t ime lag A t  = 3.06 seconds for counterweight motion to begin and the low-amplitude 
high-frequency oscillations illustrate small flexible-body motion and coupling effects 
superimposed on the rigid-body motion. 

The first example dealt with a simplified crew motion of constant magnitude and 
therefore the transient response of the system could be interpreted easily. The second 
example deals with an oscillatory crew motion, which yields a more complicated super
position of transient and steady-state response. 

Figure 14 contains t ime domain plots of system response for the oscillatory input 
M1 = 100us(t)cos(l.It). Figure 14(a) contains space-station attitude. This response 
indicates two oscillations, one at the space-station frequency i21 = 1.58 rad/sec and 
one at the forcing frequency w = 1.1 rad/sec. The oscillation at the space-station fre
quency appears to be similar to that shown in figure 13(a), while the oscillation at the 
forcing frequency maintains a constant magnitude. The stesdy-state magnitude as found 
from figure 12(a) is O1 = 1.78, = 1.7 x 10-3 radian, which is approximately the oscilla
tion magnitude found for  100 < t < 120 seconds, where the steady state was reached 
temporarily for the system of figure 13. 

Figure 14(b) also indicates two oscillations, the steady-state oscillation at the 
forcing frequency having the lower magnitude 62 = 0.226, = 0.22 x loe3 radian 
(fig. 12(a)),in evidence for 190 < t < 210 seconds. Therefore it may be seen that the 
oscillation at a2= a1= 1.58 rad/sec is more dominant than in figure 14(a). The same 
energy transfer between the space station and the counterweight occurs until system 
damping absorbs all available energy and the response is entirely steady state. 

Figures 14(c) and 14(d) are quite similar if  the basic energy lag time 
A t  = 3.06 seconds is neglected. The high-frequency oscillation occurs approximately at 
the forcing frequency. The low-frequency beat may indicate the proximity of the forcing 
frequency w = 1.1 rad/sec and the lowest cable mode w 1  = 0.649a1 = 1.027 rad/sec. 
The steady-state oscillation amplitude can be found from figure 12 to be 
v1 - v2 - 0 . 1 ~ ~= 0.001 foot (0.0003 meter), which is approximately the average amplitude 
shown in figures 14(c) and 14(d). 
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This discussion of transient response w a s  included in order  to examine, for some 
forcing functions, the deviation of actual response from that predicted by the steady-
state nondimensional plots previously presented. Since all types of disturbance inputs 
are theoretically possible and since the system is an infinite-degree-of-freedom system, 
no positive conclusion about transient response is possible, However, it appears f rom 
the data, including that presented, that o rde r s  of magnitude of maximum attitudes and 
translations can usually be estimated by approximating the disturbance as a harmonic 
function (or s e r i e s  of functions) and doubling the steady-state maximum response. Also 
the effect of energy flow between the space station and the counterweight will cause a 
transient oscillation of s imilar  magnitude to appear when the steady-state prediction for 
that portion of the system is small. A second conclusion about the transient behavior is 
that the effect of the cable lag t ime A t  is not, in itself, critical for systems typical of 
those presently conceived. 

Bond Graph Representation 

A bond graph for the system described by equations (1)to (3) is included (fig. 15) 
to provide additional description and to serve as a graphical tool for the discussion of 
energy flow within the system. References (3) to (5) contain detailed discussion of the 
elements of a bond graph. A simplified discussion is also included in appendix F. 

Energy enters  the system at the effort sources of bonds 1, 5, 13, and 16. These 
effort sources represent the space-station and counterweight forcing functions M1, F1, 
M2,and F2 which a r i s e  f rom crew motion, aerodynamic drag, and so forth. This 
energy then flows from the space station or counterweight into the cable, causing the 
dynamic motion of the system and the interaction between the cable, space station, and 
counterweight. 

Figure 16 contains t ime plots of the energy of the space station, cable, and counter
weight and the total energy for the system of figure 13. The total energy, plotted in fig-

TAl(2 
u re  16(a), has a maximum value of 

2 
= 0.2 ft-lb (0.27 joule), which occurs 

initially and represents  a loss  of artificial gravitational field potential energy when the 
crew member changes position in the field at t ime t = 0. This energy enters  the system 
at bond 1and appears as space-station kinetic and potential energy (fig. 16(b)). It then 
flows through bond 4 to other elements of the system until at 100 < t < 120 seconds the 
counterweight energy (fig. 16(c)) is equal to the space-station energy. At this point the 

T A ~ B ~ ~  
available space-station energy (energy above the steady-state energy 

2 
= 0.05 ft-lb 

is zero and the counterweight begins to radiate its energy through the cable 
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to  the space station, the energy exchange thus being reversed. It is interesting to  note 
that the maximum energy contained in the cable (fig. 16(d)) is only 4 percent of the maxi
mum energy present in the system. Also the magnitude of the total system energy is 
extremely low. This result  indicates that a probable low-power attitude control system 
could provide active damping for the space station (for crew-motion magnitudes dis
cussed herein). 

CONCLUDING REMARKS 

In the preceding analysis, equations for the dynamic system have been developed 
and solved. The results of this analysis allow certain concluding remarks  concerning the 
behavior of the system, within the boundaries of all connected simplifying assumptions. 

First, the basic attitude response of the space station is that of an undamped second-
order  system, with a resonant frequency 521. Coupled to this basic response are rigid-
body characteristics, usually in evidence at frequencies lower than 521, and cable lateral 
mode effects, usually in evidence at frequencies higher than 521. The entire system can 
be considered to be the superposition of uncoupled rigid-body, flexible -body, and "heavy 

520 << 1 and -string" motion when - W 1  >> 1 where - is the ratio of spin frequency
521 521 a1 

w1to uncoupled space-station frequency and - is the ratio of fundamental cable mode 
a1 


frequency to uncoupled space-station frequency. However, the example system does not 
meet these conditions. Damping from mechanisms involved with the viscoelastic bending 
of the cable is extremely small because of the low dynamic curvature of the cable. The 
low cable curvature arises from the high velocity of cable lateral waves. 

The counterweight has  a weak effect on the steady-state response of the space sta
tion. However, for  any real situation where the transient response will usually dominate, 
the counterweight is seen to  absorb energy from the space station and then radiate this 
energy through the cable back to  the space station. Therefore, in this sense, the contri
bution of the counterweight is in no way negligible. 

Finally, the o rde r s  of magnitude of the maximum attitudes and translations of the 
space station and counterweight could be estimated, in the cases considered, by approxi
mating the disturbance in question as a harmonic function (or series of functions) and 
doubling the steady -state maximum response. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 22, 1968, 
125-19-03-10-23. 
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APPENDIX A 

RIGID-BODY CHARACTERISTICS OF THE ROTATING SYSTEM 

This appendix presents a solution of Euler's equations for the system, where the 
cable length is large and the overall system inertias are constant (fig. 17). If the system 
is assumed to have only low-frequency disturbances (w << ai)acting on it, it will behave 
as a rigid rotating body. If, in addition to the rigid-body motion, the total disturbance 
profile is assumed to cause only small flexible-body displacements relative to the space
craft dimensions, the rigid-body inertias will be essentially constant and the total space
craft motion will consist of the superposition of small linear flexible-body motion on 
rigid-body motion. 

Euler's equations a r e  

Mx = AGx + (C - B)bybz 

0 = Biky + (A - C)&xh, 

M, = Cijl, + (B - A)dr,&, 

where hx, hy, and &, refer to the rigid-body rates, ax and ay are small 
attitudes of the system about the x- and y-axis, and A, B, and C refer to the X-, Y-, 
and Z-axis rigid-body inertias. Torques Mx and M, a r e  assumed to be small and to 
ac t  along the X- and Z-axis, respectively. 

These equations are simplified by the assumption that the cable is long and therefore 
Y-axis inertia B is small, and that A and C a r e  approximately equal. Also the spin 
velocity &, is assumed to be nearly constant and of magnitude 52,. Direct substitution 
of these assumptions into equations (Al)  is not possible, however, since it would violate 
the physical necessity that 

A + B > C  

A + C > B  

B + C > A  I 
The inequalities (A2) can be rewritten as 
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-1 <-C - A < 1  (A + C > B) (A3)B 

Equations (Al) are now rewritten with simplifying assumptions as 

Ma, = 2 + C-A0~6,a, J
B 

C - A  iswhere all initial values other than dr, = 52, are zero and the quantity -
B

bounded between 1and -1. 

The stability of the system is now apparent (and well known), namely C > A. If 
maximum stability is assumed the condition that must be met is obviously 

which reflects the system maximum stiffness under the disturbance torque Mx. This 
condition is used in the derivation of the equations of the flexible system. 

The magnitude of the Y-axis rate as given by the second of equations (A4) is seen 
to depend on the X-axis displacement and the Z-axis rate. For long cable systems the 
displacement ax is small and therefore the Y-axis rate is also small relative to a0. 
Also the Z-axis  acceleration is seen by the third of equations (A4) to be second-order 
small since the quantity Mz/A is small. This result  substantiates the constant-spin
velocity assumption. 
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LINEAR SYSTEM EQUATIONS 

The lineari ed Euler equation for  rigid-body motion in t h  YZ plane (the first of 
eqs. (A4)) for  a condition of maximum YZ-plane stiffness is 

MXa, + S202Crx = -
A 

This equation can also be derived from conservation of angular momentum according 
to figure 17(a) where the system is shown as a rigid body and the body forces from the 
artificial gravity field acting on the space station and counterweight are equal in magnitude 
to the tension T and directed normal to the spin axis. The equation is 

ax + T(Z + A 1  +A2)  ax= -MX 
A A 

where 

A =  m1m2 (1 + A1 + A2)2
ml+ "2 

Equation (5) defines the tension as 

m m
T = (2 + A 1  +A2)ao2

m 1 +  "2 

Substitution of equations (B3) and (5) into equation (B2) will yield equation (Bl) and thus 
verify the uncoupled rigid-body assumptions of figure 17(a) and equation (B2). 

In a manner analogous to that for the derivation of equation (B2), equations for the 
complete system in the YZ plane can be derived. According to figure 3, conservation 
of lateral momentum requires that 

871F1 + T-(0,t) = m 
as 

F2 - T-(Zarl ,t) = m2Y2 Ias 

20 
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while conservation of angular momentum requires that 

Also the constraints exist that 

A comparison of figures 2 and 3 shows the similarity of the XY- and YZ-plane con
figurations, the exception being the direction of the body forces  T (fig. 17) and thus the 
incorporation of a rigid-body oscillation at the spin frequency 52,. The response in the 
X Y  plane is therefore identical to that in the YZ plane for  disturbances at frequencies 
much greater than the spin frequency 52,. 
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CABLE EQUATIONS AND MODAL DESCRIPTION 

The differential equation of motion for the cable is derived by considering conser
vation of lateral momentum for  each incremental identified cable mass  point. The cable 
is an infinite-degree-of-freedom system since there are an infinite number of mass  
points. An arbi t rary mass point is shown in figure 18. The D'Alembert loading 

a2
pA 

a t2 
ds, the cable tension T, the cable shear force V, and the cable bending moment 

Mc are also shown in the figure. From lateral  (q-direction) equilibrium, for small  q, 

From rotational equilibrium (the rotary inertia being neglected), fo r  small  q, 

3d s  = -V d s  a s  

o r  

Substitution of equation (C2) into equation (Cl),  for constant tension T, yields 

The cable moment Mc is small  but is included to introduce damping (energy dissipation) 
into the system. This moment is related to curvature by the equation 

2 
Mc = E1 3 

a s  

If the material is assumed to be viscoelastic, the modulus is complex, or 

M c =  (E ' + - - a$ (1 2::2) 
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where E" represents the viscous portion of the complex modulus (loss modulus), E' 
is the elastic portion of the modulus, I is the area moment of inertia for  the cable c ros s  
section, and w is the oscillation frequency for 7, which is necessary for  use of the 
complex modulus but is not a t rue material property. The effect of bending energy s tor
age E' wi l l  not be included hereafter since damping only is the desired second-order 
effect. 

The solution of equation (C3) with the cable moment described by equation (C5) is 
a n  undesirably complex way to introduce cable damping. Therefore, a n  alternative way, 
valid for  small  damping only, is presented. It is noted that this approximation deals 
mainly with the second te rm Mc in equation ((23). 

A wave traveling in the cable could have the form 

r](s,t) - ei(wt - ks) 0) 

where w is the oscillation frequency and k is the wave number. Substituting equa
tions (C6) and (C5) into equation (C3) and neglecting E'  required that 

k = *  

where 

The modulus of the complex quantity E / C ~  is small  and can equal zero. There
fore, equation (C7) is not in a desirable form for computation. A more acceptable form, 
which considers E / C ~  as a small  number is 
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These four approximate solutions are necessary to meet the four required boundary 
conditions of equation (C3) when the moment Mc is defined by equation (C5). However, 
for  small  E the second two solutions result in a very local exponential correction of the 
equation of motion of the cable near the cable attachment point. The length of this region 
is given by the equation (ref. 6) 

Therefore, by assuming the condition ZE/l << 1 is satisfied, only two boundary conditions 
are sufficient. The wave-number equation is therefore taken as 

where r w ,  defined by the equation 

is a pseudo-damping parameter. The choice of r is somewhat arbitrary since E" 
is a cable parameter which var ies  with cable tension (i.e., s t ra in  level) T, cable mass  

per  unit length PA, and frequency 0. 

The definition given by equation (C10) of the damping parameter r also is con

venient i�a modal-equation approach is used. The reason is that equation (C3) assumes 
the form 

which has a separable solution. (Substitution of equation (C6) into equation (C11) wil l  
yield the wave-number equation (C9) and thus verify equation (Cll).) Solving equation 
(C11) by using cable modes is standard and will be outlined only. 
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A separable solution for  q(s,t) is assumed to be of the form 

Substitution of equation (C12) into equation (C11) yields the two separated equations 

where 

")n mode frequency 

Pn mode damping coefficient, 
2T 

undamped phase velocity, ($y2 
For the boundary condition at the cable extremities (s = 0 anc. s = ) of zero lateral 
force o r  

the solution of the s-dependent function becomes 

nn sgn(s) = cos -
1 

with the condition that 

The following lateral forces at the cable extremities (numerically designated according 
to fig. 15) are introduced: 
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e8 = -T 3 (O, t )a s  

Equation (C11) is then rewritten by using the 6-function 6(x) and becomes 

The solution is assumed to  be expressible as a series of normal modes of the form 

q(s,t) = 1hn(t)cos n z  
1 

n=0 

Substitution of equation (C17) into equation (C16) and use of the orthogonality of the modes 
yields the following uncoupled equations for hn(t): 

.. e8 + eg 
(n = 0)ho = 

P U  1 
fin + 2pnwnhn + wn2hn = 

03 

e8 + (-1)"eg 

PU/2  

The preceding mathematical description of the cable is standard and normally ade
quate. However, the requirement exists in any computer solution of a system that var i 
ables must be integrated and not differentiated with respect to time. In this specific case 
a dual formulation of the cable mathematics is thus required, where flow variables 
(velocities) are integrated and summed to  yield effort variables (forces). The dual formu
lation of the equations can be  found by an algebraic inversion of equations (C18) in Laplace 
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notation, where all initial conditions are set equal to zero. References 7 and 8 contain 
more specific information on the dual formulation for elastodynamic problems. Ref 
erence 9 discusses the inversion problem. The algebra of the inversion is omitted and 
the formulation is given as 

m ’ (C19) 

n=1 

Equations (C19) can be rewritten, where cable slopes a r e  functions of attachment-
point velocities and positions, as 

These equations a r e  an equally valid description for XY-plane lateral cable motion where 
77-q and 8 - c p .  
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STEADY-STATE EQUATIONS 

The governing equations for the space station and counterweight, equations (B4), 
(B5),and (B6), are rewritten as two boundary-condition equations for the cable. If 
F1 = F2 = M2 = 0 these equations are 

where 

(n = 1,2) (D2) 

For  a harmonic disturbance torque 

M1 = Mo sin wt (D3) 

a solution for cable lateral displacement q which satisfies equations (Dl) as well as 
equation (C9)will be of the form 

q(s,t) = alek2ssin(wt + k l s )  + ble-k2ssin(wt - k l s )  

+ a2ek2scos(wt + k l s )  + b2e-k2scos(ot - k l s )  

where 

k l  = Re(k) 

k2 = -Im(k) 
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The coefficients al ,  a2, b l ,  and b2 are found by substitution of equations (D3) 
and (D4) into equations (Dl), which yields the matrix equation 

l + B  l - B  -A A 

A -A 1 + B  

l - D + C F  (1 + D + CF)E C - (1 - D)F (-C + 
+ (1 - D)F (C - (1 + D)F)E 1 - D + C F  (1 + D + CF)E 

where 

D2C = D2kl = -k l l  
I 

D2D = D2k2 = -k2I
I 

E = e-2k22 

F = tan k l l  

I1A1 (1+--- n1211 
J1 nw 2 J J  

D1 = 
1 - -oL 

l2 

1- -WY 

n22 
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The displacements of the space station and the counterweight can now be written as 
solutions of the preceding differential equations as follows: 

el = M o b 1  
s in  ut + 1 arl-(O,t) 

1 - -u2  1 --w2 a s  

Q12 Q12 

2 
v2 =-a' A2 9(Z,t)

w2 as 

By introducing the notation 

3 ( o , t )  = L sin u t  + N cos u t  
as 

%(z,t) = P sin wt + Q cos wt a s  

the displacements can be rewritten in dimensionless form in t e rms  of maximum amplitudes 
and phase angles. Therefore 

s i n k t  + y l )  
MO max 

where 
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where 

where 

and 

where 

and where 

w2 

y2 = t a n - l N
L 

s i n k t  + y 3 )  
max 

(F)
max 1 - -0" n 

y3 = tan-1 9
P 

y4 = t a n - 1 9  = 
P y3 

L, N, P, and Q are defined as 

L = k2(al - "1) - kl(a2 - b2) 

N = k l (a1  - bl) + k2(a2 -
b2) 
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P = sin k l IL(a lk1  + a2k2)ek2L?- (b lk l  + b2k2 

-k2I 
a lk2 - a2k1)ek2' - (blk2 - b2kl)e 3 

a l k l  + a2k2) ek2z - (b lk l  + b2k2)e 

blk2 - b2k 1)e- k 2 j  

There a r e  eight basic independent dimensionless variables required to define the 
system maximum amplitudes. These variables are rw/T, wI /c ,  Al/Z) w/Q1) 11/J1) 
A$, w/C22) and I2/J2. The required program input must be in  t e rms  of the following 
eight dimensionless variables, written here as functions of the preceding eight equation 
variables: 

A2 -A2- _ -
I L ? 

I2 - I2- _ -
J2 J2 

32 




APPENDIX E 

COMPUTER PROGRAM FOR STEADY -STATE SOLUTION 

The computer program for steady-state solution of the system equations for an 
input moment M1 acting on the space station is listed herein.* Eight input variables 
a r e  required for solution of the problem. These variables, in t e r m s  of the equation 
variables defined in the analysis, are 

w1DP (3) 
a1 

a2DP (4)= -
O l  

mlDP (5) = 
m2 

DP (6) I1-
I2 

DP (7) A2
2 

The results a r e  printed out as the following dimensionless maximum amplitudes: 

vlT
VAR (2) = (%) 

max 

?he program discussion and listing which appear in this appendix were supplied by 
Cohoon and Heasley, Inc ., consulting engineers, Cambridge, Massachusetts, under con
t rac t  to Langley Research Center. 
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max 

The program is arranged flexibly to permit solution of the problem for many values 
of any or all of the variables in a single run. Specified in the input for each variable are 
the number of equally spaced values it is to have and the smallest and largest of those 
values. The program will  solve the equations for each of the given values of DP (1) by 
using the f i rs t  value of the other input variables. It then indexes to the second value of 
DP (2) and repeats the solution for  all the values of DP (1). This process is repeated 
until the complete set  is finished. Note that although this is a very simple way to obtain 
results, it is also a very easy way to generate a tremendous amount of data. 

The following discussion and program listing should be sufficient to permit anyone 
familiar with the computer to use this program. 

Input 

The input variables a r e  read in on eight cards, each of which has  four numbers on 
it. The numbers on the cards  a r e  read with the format (12, E15.8, 14, E15.8). The first 
number on the card specifies the variable. The other numbers on the card specify, in 
sequence, the initial value of the variable, the total number of values of the variable which 
are to be considered, and the final value of the variable. The following is an example: 

1 0.lOOOOOOOEO 11 10.OOOOOOOE0 

DP (1) Initial value Number of values Final value 

Data must be fed in with the first numbers in ascending order. If this is not done, 
a statement is made and the program does not continue. 

output 

The printout of the input variables and the results is in the following form with an 
E15.8 format: 
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DP (1)= DP (2) = DP (3) = 

DP (4)= DP (5) = DP (6) = 

DP (7)= DP (8) = 

VAR (1)= VAR (2) = 

VAR (3) = VAR (4)= 

A line is skipped whenever such a set is printed out. 

There are a number of checks in the program that have certain printouts associated 
with them as follows: 

(A) DATA CARDS ARE NOT IN ORDER. This statement is printed out if  the input 
ca rds  are not in the correct sequence. When this is printed out, the program stops. 

(B) DP (3,4,5,6)CANNOT BE ZERO. This is printed out if  the input DP (3), 
DP (4), DP (5), o r  DP (6) is zero o r  becomes exactly zero during the run. The pro
gram does not stop but rather continues to the next index. If the variable is still zero, 
the statement wi l l  be printed out again and the program will index again. 

(C) WITH DY (1)= 1 EQUATION BECOMES INFINITE. This is printed out if  
D P  (1) is equal to 1. This condition would set some of the equations in the program 
equal to infinity. When this is printed out, the program indexes and continues. 

(D) WITH EV (7) = 1 EQUATION BECOMES INFINITE. This is printed out i f  
EV (7) is equal to 1. This condition would set some of the equations in the program 
equal to infinity. When this is printed out, the program indexes and continues. 

(E) MATRIX IS NOT SOLVABLE IN THIS FORM. This statement refers to the 
solution of the set of simultaneous equations in the program and may occur if  the program 
is asked to calculate a resonant amplitude with insufficient damping. If the divisor is 
smaller than a test value, this statement will be printed out. Since computation e r r o r  is 
increased with division by small numbers, this is a check to inform the person who ana
lyzes the data that numbers in the solution matrix are getting small. The test value in 
the program is 0.00000001. When this statement is printed out, the program indexes 
and continues. 
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Program Listing 

PROGRAM C P H ( I N P U T I O U T P U T ~ T A P E ~ = I N P U T ~ T A P E ~ = O U T P U T ~
C PAclGRAH F O R  MAX. DEFLECTIONS FOR NASA 1 FORTRAN 4 C+H 

U I M E N S  I O N  R l l v I ( 8 )  1 J A C K 4  81 r R F l V  ( 8  1 t D R (  8 )  ,DELT( 81 
D I  MENS I O N  DP ( 8  1 9 EV ( 8  1 v G O ( 4 - 5  1 t COF (4)9 A T ( 4 r  4 )  9 VAR( 4 1, ER( 4) 

llll DO 3 0 1  I = l r 8  
RE AD ( 5 t 302  1 JOE, K I N 1  1I 1 ,JACK ( I )  RFIN(  I ) 

3 3 2  FURMAT(I2,�15.8,14rE15.8)
IF 4 J O E - I  1 303,304s 303 

303 P I K I T E  ( 6 ~ 3 0 5 )  
335 FURMAT(2dl- l  DATA CARDS ARE NOT I N  ORDER) 

GO TO 300 
3 3 4  C O N T I N U E  
3 0 1  CCINTINUE 

00 3 0 6  1 ~ 1 1 8  
I F ( J A C K (  I ) - 1 ) 3 0 7 9 3 0 8 1 3 0 7  

308 D E L T (  I ) = O o  

GU T O  306 
307 D R ( I ) = J A C K ( I I - l

~ELT(I)=(RFINIII-RINI(I))/DR(I) 

3 3 6  CUfVTINUE 

DP I 8 ) = K I N  I ( 8 1  
JACK8= J A C K I 8 )  
DO 319 J 8 = l r J A C K 8  
D P ( 7 ) = K I N I ( 7 )  
J A C K 7 = J A C K ( ? )  
DO 3 1 7  J 7 = 1 r J A C K 7  
D P ( 6 ) = R I N I ( 6 )  
JACK6= J A C K ( 6 )  
00 3 1 6  J 6 z l r J A C K 6  
O Y ( 5 ) = R I N 1 ( 5 )  
J A C K 5 = J A C K (  5 1 
DLI 315 J 5 = 1 r J A C K S  
D P t 4 ) = K I N I  ( 4 )  
JACK4= J A C K  ( 4  1 
DJ 314 J 4 = 1 s J A C K 4  
O P ( j ) = R I N I  ( 3 )  
J A C K 3 =  J A C K ( 3 )  
DU 313  J 3 = 1 , J A C K 3  
O P ( Z ) = R I N I ( 2 )  
3 ACK2= J ACK ( 2 1 
DO 312  J 2 = 1 r J A C K 2  
UP ( 1)=RINI (1 I 
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100 CONTINUE 

DP(l)=DP(ll+DELT(ll 


311 	CONTINUE 

DP(2)=DP(ZI+DELT(2) 


312 CONTINUE 
DP ( 3 I =OP ( 3 ) +DEL T ( 3 ) 

313 CONTINUE 

DP(+I=DP(4)+DtlT(4) 


3 1 +  	CONTINUE 
UP(5)=DP(5)+DELT(5) 

315 CONTINUE 
DP ( 61 =DP 4 6 I +DELT ( 6  1 

3L6 CONTINUE 
UP(7)=DP(7l+DELT(7) 

317 CONTINUE 
DP ( 8  )=LIP( 81 +DELT (81 

319 CONTINUE 
GO TO 1111 

300 STOP 
EN 0 
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DISCUSSION O F  SIMPLIFIED BOND GRAPH NOTATION 

This short discussion is intended to define the symbols used in figure 15 only and 
is in no way a definition of the complete notation of bond graphs. 

The power bond is defined with the symbol 2 where the product of the signalf 
pair e and f describes the power passing through the bond in the direction of the half 
arrow. For the system of figure 15 the effort e and the flow f are either the pair 
torque and angular speed o r  the pair force and linear speed. The signal pairs  are not 
shown in figure 15 but are implied. A power bond number is assigned such that the effort 
associated with bond 1 is e l  and the flow f l .  

The effort sources (e.g., E 4  of figure 15 denote that effort (e.g., el) is a speci
fied function of time. The symbol 0 denotes a point of common effort; the symbol 1, a 
point of common flow. The storage element for potential energy has the symbol - C ;  
that for kinetic energy, the symbol -L I; that for energy loss, the symbol -L R. The final 

belement of figure 15 is the transformer a T F  -, which implies the relations 

fa = fb  

where m is the transformer modulus. 
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Figure 4.- Basic steady-state response. 

46 


10 



( 0 , 5 0 ,  I ,  I ,I, .01,-333) 

I .( 

v / vo  

_ I  
W 

.oI 	 I I I 

.I w /  n, 1.0 10 


(b) Space-station a n d  counterweight t ranslat ion.  

Figure 4.- Concluded. 
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Figure 5.- Continued. 
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(c )  High mass ratio, m 1/ m2. 

Figure 5.- Continued. 
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(d) Increased uncoupled frequency ratio, C+/QP 

F igu re  5.- Concluded. 
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Figure 6.- Steady-state response for low counterweight frequency. 
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Figure 7.- Steady-state response fo r  h igh  counterweight frequency. 
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(a) Space-station attitude. 

F igu re  8.- Steady-state response for high cable frequency. 
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(b) Counterweight attitude. 

Figure 8.- Continued. 
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(c) 	Space-station t ranslat ion.  

Figure 8.- Continued. 
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(d) Counterweight translation. 

F igu re  8.- Concluded. 
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(a) Space-station attitude. 

Figure 9.- Steady-state response fo r  equal cable and  space-station frequency. 
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(b) Counterweight attitude. 

Figure 9.- Continued. 

59 




--- 

-

.o I 


(0,lIlIl,l,.lI.333 

w - w  3 


1 I I 

*I I .o 10 


w / Q ,  


(c) 	Space-station translation. 

Figure 9.- Continued. 
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(d) Counterweight translation. 

Figure 9.- Concluded. 
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F igu re  10.- Steady-state response for low cable frequency. 
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(b) Counterweight attitude. 

Figure 10.- Continued. 
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(c) Space-station translation. 

Figure 10.- Continued. 
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(d) Counterweight translation. 

F igu re  10.- Concluded. 
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Figu re  11.- Steady-state response for damped cable. 
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(a) Space-station a n d  counterweight 'attitude. 

Figure 12.- Typical system steady-state response. 
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(b) Space-station and  counterweight  t rans lat ion.  

F igu re  12.- Concluded. 
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(a) Space-station attitude. 


Figure 13.- Transient response to constant step input torque. 
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(b) Counterweight attitude, 

Figure 13.- Continued. 
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(c) SDace-station translation. 

Figure 13.- Continued. 
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(d) Counterweight translation. 

Figure 13.- Concluded. 
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(a) Space-station attitude. 

F igure 14.- Trans ient  response to osci l latory step i npu t  torque. 
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(b) Counterweight attitude. 

Figure 14.- Continued. 
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(c)  Space-station translation. 

Figure 14.- Continued. 
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(d) 	Counterweight translation. 

Figure 14.- Concluded. 
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Figure 15.- Bond graph representation of system. (See appendix F for discussion of notation.) 
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(a) Total energy. 

Figure 16.- Energy flow f o r  constant step input torque. 
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(b) Space-station energy. 

F i g u r e  16.- Cont inued.  
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(c) Counterweight energy. 

Figure 16.- Continued. 
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(d) Cable energy. 

Figure 16.- Concluded. 
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(a) Rigid-body dynamics in YZ plane. 
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(b) Rigid-body dynamics i n  XY plane. 

Figure 17.- Rigid-body conf igurat ion.  
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Figure 18.- Inc remen ta l  cable mass equi l ibr ium.  
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